Today: More Classical Problems

¢ Part 1: Leader election

e Part 2: Mutual exclusion
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Termination Detection

» Detecting the end of a distributed computation

Notation: let sender be predecessor, receiver be successor

Two types of markers: Done and Continue

After finishing its part of the snapshot, process Q sends a Done or a Continue to its predecessor

Send a Done only when
— All of O’s successors send a Done

— O has not received any message since it check-pointed its local state and received a marker on all incoming
channels

— Else send a Continue

Computation has terminated if the initiator receives Done messages from everyone
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Part 1: Election Algorithms

Many distributed algorithms need one process to act as coordinator

— Doesn’t matter which process does the job, just need to pick one

Examples: take over the role of a failed process, pick a master in Berkeley
clock synchronization algorithm

Types of election algorithms: Bully and Ring algorithms
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Election algorithms: technique to pick a unique coordinator (aka leader election)

Lec. 13

Bully Algorithm

Each process has a unique numerical ID

Processes know the Ids and address of every other process

e« Communication is assumed reliable

Key Idea: select process with highest ID

Process initiates election if it just recovered from failure or if coordinator failed

* 3 message types: election, OK, [ won

Several processes can initiate an election simultaneously

— Need consistent result

O(n?) messages required with n processes
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Bully Algorithm Details

* Any process P can initiate an election

* P sends Election messages to all process with higher |ds and awaits OK
messages

* If no OK messages, P becomes coordinator and sends / won messages to all
process with lower Ids

e [f it receives an OK, it drops out and waits for an 7 won
e |f a process receives an Election msg, it returns an OK and starts an election

e |f a process receives a I won, it treats sender an coordinator
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Bully Algorithm Example
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. The bully election algorithm
. Process 4 holds an election
. Process 5 and 6 respond, telling 4 to stop

. Now 5 and 6 each hold an election
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Bully Algorithm Example

d) Process 6 tells 5 to stop

€) Process 6 wins and tells everyone
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Ring-based Election

* Processes have unique Ids and arranged in a logical ring

* Each process knows its neighbors

— Select process with highest ID

* Begin election if just recovered or coordinator has failed
* Send Election to closest downstream node that is alive

— Sequentially poll each successor until a live node is found

e Each process tags its ID on the message

¢ Initiator picks node with highest ID and sends a coordinator message

¢ Multiple elections can be in progress

— Wastes network bandwidth but does no harm
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A Ring Algorithm

Electlon message
]

(2)

§ (2.3]

Previous coordinator
has crashed

No response

e Election algorithm using a ring.
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Comparison

e Assume n processes and one election in progress

e Bully algorithm
— Worst case: initiator is node with lowest ID
» Triggers n-2 elections at higher ranked nodes: O(n?) msgs
— Best case: immediate election: n-2 messages
¢ Ring
— 2 (n-1) messages always
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Part 2: Distributed Synchronization

 Distributed system with multiple processes may need to share data or access shared
data structures

— Use critical sections with mutual exclusion
 Single process with multiple threads
— Semaphores, locks, monitors
* How do you do this for multiple processes in a distributed system?
— Processes may be running on different machines
 Solution: lock mechanism for a distributed environment
— Can be centralized or distributed
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Lock Example

* Online store example:

e 2 clients buy same item, need to decrement stock
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Centralized Mutual Exclusion

e Assume processes are numbered

* One process is elected coordinator (highest ID process)

e Every process needs to check with coordinator before entering the critical section

* To obtain exclusive access: send request, await reply

* To release: send release message

» Coordinator:
— Receive request: if available and queue empty, send grant; if not, queue request
— Receive release: remove next request from queue and send grant
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Mutual Exclusion:
A Centralized Algorithm
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Request Release
Request iT OK % A‘K

" No reply
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Queue is
) 7’ empty
Coordinator

(a) (b) (c)
a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted
b) Process 2 then asks permission to enter the same critical region. The coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2
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Properties

» Simulates centralized lock using blocking calls
e Fair: requests are granted the lock in the order they were received
e Simple: three messages per use of a critical section (request, grant, release)
e Shortcomings:

— Single point of failure

— How do you detect a dead coordinator?

¢ A process can not distinguish between “lock in use” from a dead coordinator
— No response from coordinator in either case

— Performance bottleneck in large distributed systems
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Decentralized Algorithm
* Use voting
e Assume n replicas and a coordinator per replica
e To acquire lock, need majority vote m > n/2 coordinators
— Non blocking: coordinators returns OK or “no”
e Coordinator crash => forgets previous votes
— Probability that k coordinators crash P(k) = mC, pk (1-p)m-k
— Atleast 2m-n need to reset to violate correctness
* 3 2mn"P(K)
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Distributed Algorithm

¢ [Ricart and Agrawala): needs 2(n-1) messages
* Based on event ordering and time stamps
— Assumes total ordering of events in the system (Lamport’s clock)
* Process k enters critical section as follows
— Generate new time stamp 7S, = 7S;+1
— Send request(k,TS,) all other n-1 processes
— Wait until reply(j) received from all other processes
— Enter critical section
* Upon receiving a request message, process j
— Sends reply if no contention
— If already in critical section, does not reply, queue request

— If wants to enter, compare T; with 7S, and send reply if 7S,<TS;, else queue (recall: total ordering based on multicast)
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Properties

* Fully decentralized
e N points of failure!

 All processes are involved in all decisions

—Any overloaded process can become a bottleneck
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A Token Ring Algorithm
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(@) (b)
a) An unordered group of processes on a network.

b) A logical ring constructed in software.
« Use a token to arbitrate access to critical section
* Must wait for token before entering CS
« Pass the token to neighbor once done or if not interested
« Detecting token loss in non-trivial
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Algorithm Messages per entry/ | Delay before _entry (in Problems
exit message times)
Centralized 3 2 Coordinator crash
Decentralized 3mk 2m starvation
Distributed 2(n-1) 2(n-1) Crash of any process
Token ring 1to Oton-1 Lost token, process
crash
* A comparison of four mutual exclusion algorithms.
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Chubby Lock Service

* Chubby: distributed lock service developed by google
¢ Design for coarse-grain locking

¢ uses file system abstraction for locks

Each Chubby cell (~5 machines) supports 10,000 servers

One replica is outside the data center for high availability

distributed file system interface for locking and sharing state
* Use cases:

* Leader election: use locks for leader election and advertise leader
¢ Grab lock, declare oneself leader

¢ Coarse-grain synchronization - hold lock for hours or days

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 13 21
Amherst

Chubby Lock Service

e Chubby cell: elect a primary

e each replica maintains a DB

o client : chubby| i :
* master initiates updates to DB application | library \O !
* Use file abstraction S RPCs | | master

« file is a “named” lock client :ChUbby/ O

application library
e reader-writer locks E O !

client processes : O ;

________

* Primary can fail

* Triggers new election
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